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Abstract —This paper describes a variable-mesh combination of the

expanded-node transmission fine matrix (TLM) and finite-difference

time-domain (FD-TD) methods for solving time-domain electromagnetic

problems. It retains the physical process of wave propagation and the

numerical stability of the former, and has the computational efficiency of

the latter. This full-wave finite-difference transmission line matrix

(FD-TLM) method utilizes transmissionfines of differing impedancesto
implement a three-dimensional variable mesh which makespractical the
simulation of structures having fine details, such as digital integrated
circuits (lC’S). Circuit models for lumped resistors, capacitors, diodes, and

MESFET’S have been developed and included for use in simulating digital

and microwave IC’S. The validlty of the variable mesh implementation is

verified by comparing an FD-TLM simulation of a picosecond pulse

generator structure with electro-optical measurements, and the validity of

the device model implementation is verified by comparing an FD-TLM

simulation of a MESFET logic inverter with a SPICE simulation.

I. INTRODUCTION

A S SEMICONDUCTORS and thus digital and mi-

crowave integrated circuits (IC’S) become faster, the

interconnections within the chips play an increasingly im-

portant part in circuit design. Picosecond-speed devices

generate components in the tens to hundreds of gigahertz

frequency range, where quasi-static electromagnetic analy-

sis of interconnections is no longer accurate. What is

needed is a full-wave, three-dimensional electromagnetic

analysis. One such method is the transmission line matrix

(TLM) method [1], which has been used for larger struc-

tures to determine properties such as resonant frequencies

of cavities and microstrip dispersion. A related numerical

method, the finite-difference time-domain (FD–TD)
method [2], [3], has been used to simulate pulse propaga-

tion along conductors [4] and for electromagnetic scatter-

ing problems [5]. In most published descriptions of pulse

propagation along microstrips, the conductors are wide
enough that a uniform mesh can be used for the descrip-

tion of the structure. However, in digital 1(2’s, the conduc-
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tor widths are much smaller than the other dimensions of

the structure, for example a l-pm-wide conductor fabri-

cated on a 500-pm-thick substrate. In this case a variable-

mesh method is necessary to perform an accurate simula-

tion without exceeding the memory and time limits of even

supercomputers. A fine mesh is used around the conduc-

tors of interest and is smoothly graded into a coarse mesh

near the integrated circuit package walls. Previous vari-

able-mesh TLM methods [6], [7] have the disadvantage of

requiring more computer resources when used to simu-

late IC’S.

The ongoing refinement of the TLM method has taken

place in parallel with the use of the FD–TD method for

solving Maxwell’s curl equations [8]. The finite-difference

transmission line matrix (FD–TLM) method is a combina-

tion of both, offering a physical basis for wave propaga-

tion and the numerical stability of the TLM method and

the computational efficiency of the FD–TD method.

Previous simulations of microstrips using the FD-TD

method have been linear, where one end is excited with a

field source and the fields are determined as they travel

down the line to a linear termination [4]. By incorporating

circuit models for lumped elements such as resistors, ca-

pacitors, diodes, and MESFET’S in the FD-TLM method,

more realistic simulations of high-speed, high-frequency

IC’S are achieved.

A short review of the conventional, three-dimensional

expanded-node TLM method will be given, followed by a

description of the three-dimensional variable-mesh TLM

method that is based on transmission lines having differing

impedances. This method will be transformed into the

FD–TLM method by rewriting the TLM scattering matri-

ces as finite differences, which will then be compared with

the variable-mesh FD–TD method. A description of the

circuit models for resistors, capacitors, diodes, and MES-

FET’s follows. A variable-mesh FD–TLM simulation of a

picosecond pulse generator structure will be compared to
electro-optic measurements, and an FD–TLM simulation

of a two-MESFET logic inverter will be compared with a

SPICE simulation to demonstrate the validity of the vari-

able mesh method and the MESFET model implementa-

tion.
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Fig. 1. Variable-mesh TLM cell. Thesixfield components in the lower
left corner are associated with J, j, k.
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Fig. 2. (a) l?, shunt node. (b) Hx series node. The line with impedance
z ~zn is the same line in (a) having admittance YXzn.The permeability
stub has impedance ZPXH.

II. l&VIEW OF THE THREE-DIMENSIONAL

EXPANDED-NODE TLM METHOD

The conventional, three-dimensional expanded-node

TLM method is based on pulses which travel along trans-

mission lines interconnected as a three-dimensional matrix

and then scatter at the intersections (nodes) into other

connecting lines [1]. Fig. 1 shows a cell of six nodes that is

repeated throughout the structure to be simulated. In the

uniform-mesh case, u = u = w = Al and the lines all have

length A1/2 and the impedance of free space. There are

two types of nodes: shunt nodes, where the voltage corre-

sponds to an electric field; and series nodes, where the

circulating current corresponds to a magnetic field. The

computer program simulates wave propagation by per-

forming scattering operations at all the shunt nodes at one

time step and at all the series nodes half a time step later,

yielding an explicit numerical method. In this manner,

electromagnetic wave propagation is simulated, according

to Huygens’s principle [9]. Fig. 2 shows detailed drawings

of the two nodes. The time step, ~, is the time it takes for a

pulse to travel a length Al along the lines.
The TLM method is based on an analogy between

Maxwell’s equations and the transmission line equations

for the matrix [1]. Thus, by calculating the voltage at a

shunt node and the current through a series node from the

.5
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z

Fig. 3. An example of 18 variable-mesh TLM cells stacked together,
emphasizing the interconnection of tbe Hx and E= nodes with their
neighbors: O magnetic node, . electti c node. The cell at i, j, k with
dimensions u =2, o =2, w = 3 is highlighted. The stubs have been
removed from the nodes for clarity.

scattering matrices, the electric and magnetic fields are

found, respectively.

Typically, a simulation of a structure is performed by

applying a series of pulses to an electric field node and

monitoring the voltages at other shunt nodes. A metal

conductor is described by shorting out appropriate shunt

nodes. Dielectric and losses, both isotropic and anisotropic,

are described by adding shunt-conne{cted open-circuited

and loss stubs, respectively, to the shunt nodes [10]. Like-

wise, permeability y variations are described by adding se-

ries-connected shorted stubs to the series nodes. The stubs

are omitted from Fig. 1 for clarity. In [11]–[13], anisotropic

perrnittivity and loss are represented instead by ,lumped

capacitance and resistance at the electric field nodes, and

permeability is represented by lumped capacitance at the

magnetic field nodes.

III. THE VARIABLE-MESH THREE-DIMENSIONAL

TLM METHOD

The variable-mesh TLM methc,d uses the same intercon-

nection of lines as the uniform-mesh TLM method. Cells

represented by six nodes can have sides of different length

and are stacked together to fill the entire space being

simulated. Fig. 3 is an example of several variable-mesh

cells filling a region of space. The lengths of the matrix

cells are represented by u, U, and w. Each cell of dis-

cretized space is referenced by an i, j, k locator, but for

clarity, only those positions which differ from i, j, or k

are listed. Note that the cell dimension u = u, ~ ~ is inde-

pendent of j and k; v is independent of i and ‘k’; and w is

independent of i and j. Other symbols in Fig. 3 are

defined later.
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In [6], two techniques are described which implement a

two-dimensional variable mesh in the TLM method, one

called the stub loaded matrix, where the transmission lines

are all of the same impedance, and the other called the

hybrid matrix, where the matrix is composed of lines

having different impedances. The three-dimensional stub

loaded matrix method has the disadvantage that the simu-

lation time step is made smaller than that in a uniform

mesh having the same smallest grid spacing, by the ratio of

the largest to the smallest grid spacing. This increases the

number of iterations needed to perform a simulation for a

given time period. However, by implementing the three-

dimensional variable mesh using the hybrid matrix ap-

proach described below, the size of the time step is no

longer dependent on the grading ratio, thus significantly

reducing the computer time required to perform a simula-

tion involving large grading ratios.

In the hybrid-matrix variable-mesh implementation, all

transmission line segments connecting the nodes of the

same type are of length Al, set equal to the shortest length

of the variable mesh, and stub loading is then added at the

shunt nodes to represent the longer lines. Each transmiss-

ion line segment, or link, has inductance per unit length

of p ~/h and capacitance per unit length of ~~/h, where h

is a velocity scaling factor to be determined later, and p ~

and c~ are the permeability and permittivity, respectively,

of free space. The propagation velocity of pulses on a link

is thus proportional to h, and is equal to the speed of light

in air when h is unity. Thus, the propagation delay along a

link is

Al Al

h~
~= —= —..—po~o (1)

v

where v is the propagation velocity of pulses along a line.

Equation (1) indicates that h is also a time scaling factor.

To simulate lines that are longer than Al, the pulses

must travel at a velocity proportional to the artificial line

length to maintain pulse synchronization throughout the

network. Thus

.=&=; (2)

where u is the velocity of pulses on a line of artificial

length 1’ having loaded inductance per unit length of LO

and capacitance per unit length of CO. From (1) and (2) it

follows that

(Al)2pOC0
co= h’~o~fz “ (3)

Thus, the impedance ~m of this artificially extended

line is proportional to the length 1’, which verifies that a

variable mesh can be obtained from a network of transmis-

sion lines having different impedances. The computation

of LO and CO is considered in the following.

A. Series Nodes

The relation between Maxwell’s curl equations and the

transmission line equations at a series node determines the

inductance per unit length of the lines. As an example,

consider the lines connecting the E= shunt node to the Hx,

H
X, J—l?

Hy, and Hy, i_l series nodes, which have induc-

tances per unit length of Lxzo = wjix/2ii, Lxzo, j_ ~=
Wjix, j_l/2ii, LYZO= WjiY/2.ti, and LyzO,i-l = WPy,i-1/2~>

respectively, as derived in Appendix I, where jiX, ii, and .5

are defined. The lines connecting series nodes to shunt

nodes are identified using subscripts, with the first repre-

senting the type of series node and the second describing

the shunt node. The O subscript indicates that the induc-

tance is per unit length. In these expressions and elsewhere

multiplication is assumed to have precedence over division.

Since Z.= 2/20 = hl’LO/AlpO, then from (3) CO=

co Al/hI’Z., where the subscript n means normalized to

the impedance of free space, 2.. Thus, the normalized line

impedances are ZXze = jixuwh /2 ii Alp ~, ZXz~, j _ ~ =

~., j-lUj–lwh/2~ AIPo> -ZYzii = FYuwh/2~ AIPo> and
z yzn, i–1 = fry,, - lui - lwh /2fiM409 and the line capacitances
per unit length are CXZO= co A1/hvZxyn, Cxzo,J_ ~ =

~oA1/hOJ–lzxzn,J–l) Cyzo= co A1/huZyzn, and CYZO,,_l =

~OA1/huz–lZYzn,z–l. Thus, the variable mesh requires us-

ing loaded lines having different impedances. The same

concepts apply to the H= node.

B. Shunt Nodes

Even though the transmission lines satisfy the induc-

tance requirement at the series nodes, they do not neces-

sarily have the correct capacitance to satisfy Maxwell’s

curl equations at the shunt nodes. At some shunt nodes, it

is necessary to add capacitance in parallel with the four

intersecting lines, which is performed by connecting an

open-circuited A1/2 long transmission line stub in shunt

with the other lines.

Consider the E= shunt node, which, from Appendix I,

should have a total capacitance of

cz=:(~z~~+~.,l-luz.lu+

~z, j–lu~, –l+~:, z–1 ,j–l~i–l~J–l). (4)

The stub must compensate for the deficiency in the inter-

secting lines’ capacitance, and it has a capacitance of

c~= =C= –+(CYZOU + cy=o,z_lu,_l+ Cxzoo + cxzo, J_lu,_J.

(5)

The lumped element approximation for an open-circuit

stub of length A1/2, at frequencies where the wavelength

is relatively long compared to the stub, is a capacitance

Csz = &Y~z (6)

where Y~Z is the stub admittance [6]. The admittance of a

stub, normalized to the admittance of free space, I=,

is

2hC~z
Ysz,l = — (7)

eoAl

from (1) and (6).

There is also an infinitely long loss stub attached to each

E shunt node to represent the conductivity of the region in
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space. For the E, node, the loss stub has an admittance of

1
Y~z=G== #u=uu+uz,, _lu,_lU+

‘Z, j–luuJ–l+ ‘Z,l–l,J–l~i–l~J_l) (8)

from Appendix I. The same concepts also apply to the EX

and Ey shunt nodes.

Since the TLM method is based on the idea of simulat-

ing wave propagation by using networks of passive trans-

mission lines, it is necessary that all stub admittances be

nonnegative. This feature of the TLM method ensures

numerical stability against exponentially increasing signals.

To prevent the admittance of the stubs from being nega-

tive, h in the equations for transmission line capacitance is

selected to be sufficiently large. However, h should be no

larger than necessary, since the time step used in the

simulation is ~ = Al\hc, where c is the speed of light in

free space, which means that more iterations would be

needed in the simulation for an excessively large h.

That a constant v~ue of h, independent of the grading

ratio, will prevent the stubs from having negative admit-

tance values, can be seen by considering (5) and substitut-

ing the equations for the capacitances, which gives

For media with permittivities and permeabilities equal

to or greater than those of free space, (9) provides a stub

with smallest capacitance (worst case) when these are

equal to those of free space. Thus, using the free-space

values in (9) and requiring C~z to be nonnegative, we

obtain

(lo)

Now, since the smallest dimension is Al (i.e., u > Al,
u > A 1), h = 2 prevents the stub from having negative

capacitance and thus negative admittance, for any grading

ratio.

IV. REFORMULATION AS A FINITE-DIFFERENCE

METHOD

The uniform-mesh TLM method has been shown to be

equivalent to the direct implementation of Maxwell’s curl

equations as finite differences by Johns [3]. Appendix II

shows, in a perhaps more intuitive manner, how the vari-

able-mesh TLM method can be rewritten as finite differ-

ences.

The scattering matrix for the variable-mesh TLM E=

shunt node is listed in Appendix II along with its reformu-

lation into the finite-difference equation
nT7 , -v

.( Ix,, _,- Ix+ Iy-ly,,_l)n+l/2 (11)

where

K = ‘y.. + ‘w., i-l + ‘xzn + ‘cz., J-I + ‘S.n + ‘b. (12)

and the Y are the admittances (of the lines connected to

this node, normalized to the admittance of free space and

the superscripts represent the time step. Similarly, the

scattering matrix for the variable-mesh TLM HX series

node is listed in Appendix II, which yields the finite-dif-

ference equation

—(K-u,,+, +Kv,k+, -y,)n (13)1;+1/2= ~;-v2 + 2
Zokt

where

M.z ~=~,,+~ + Zxzn + Zxyl, + Zx,,n, k+l + Zpxn (14)

and the Z are the impedances of the lines connected to

this node, normalized to the impedance of free space.

Thus, the variable-mesh TLM method has been converted

into the variable-mesh FD–TLM method.
The three-dimensional variable-mesh FD-TLM method

requires much less in the way of computer resources than

the three-dimensional extension of the variable-mesh TLM

method proposed by A1-Mukhtar and Sitch [6]. The pres-

ent method uses only 18 memory locations per six-field

cell versus 26 (or 30 if anisotropic permittivity and perme-

ability are considered) in [6]. Moreover, the present method

requires only 36 floating point operations per cell versus

69 in [6]. Even more significant is that the time step in the

present method is independent of the mesh grading ratio,

unlike [6], where the time step size is reduced in proportion

to the ratio of the largest to smallest mesh spacing, thereby

requiring many more iterations for the same total simula-

tion period. For example, in the DCFL inverter simulation

described later, there is a mesh cell with dimensions u = w

=1 pm and u = 256 pm, with c,= 1, yielding a time step

of 1.67x 10-15 s for the present method, and by (7) and

(24(b)) in [6], 6.51X 10-18 s for the latter method. Thus,

the variable-mesh FD–TLM method is much more compu-

tationally efficient for IC simulation than the method

described in [6].

The variable-mesh FD-TLM method also has advan-

tages over the three-dimensionall variable-mesh punctual

node method [7] for IC simulal.ion. The punctual node

method has a very complex 15:<15 scattering matrix at

each six-field node. Although for regular cavities contain-

ing only one or two dielectrics these are easily simplified,

they are very unwieldy to store in memory and multiply by

the node voltages for structures !having elaborate conduc-

tor and dielectric boundary conditions found in IC’S. Thus,

less computer memory and time would be required for an
IC simulation using the variable-mesh FD–TLM method.

This, as all other discrete mesh methods, introduces nu-

merical dispersion, which is a function of the mesh size

variation. Although there is reasonable agreement between

the FD–TLM method and other approaches, as discussed

later, further study of this effect k needed.
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V. DIRECT IMPLEMENTATION OF MAXWELL’S

EQUATIONS AS FINITE DIFFERENCES AND

COMPARISON WITH THE VARIABLE-MESH

FD–TLM METHOD

Maxwell’s curl equation for the E= field is

~Hy dHx - ‘E. ● g E-

ax–ay=c’dt ‘
(15)

which, when truncated Taylor series are used for the

partial derivatives as follows,

dHy 1
— = ;(HY- Hy,1_1)”+112

dx

dHX 1
— = z(HX-HX,,_l)”+l/2

ay u

(16)

(17)

aEz—.&(&+l-&)
at z z

(18)

and the time average is used for E, in the term containing

the conductivity,

‘%==&+l+@ (19)

gives

( 2iiz

)(

2
Ezn+l= l_

(2i:/AT) + F= ‘:+ (2 Ez/AT) + F, )

“(

H,- Hy,Z_l HX, j_l– HX ‘h~l’
+

)
(20)

G 5

In isotropic loss-free regions, this is similar to the ap-

proach used in [5], but (19) is treated differently, as is also

the averaging of conductivity, permittivity, and permeabil-

ity. When similar approximations are used, the equation

dE, dEy aHx
_=. pxT

ay – az
(21)

gives

(22)

The electromagnetic fields at the E, shunt node and the

surrounding H.Y and Hy series nodes in the FD–TLM

method are related to the analogous node voltage and

currents by

~= EZw, IX= HXti, Iyz Hyfi. (23)

Substitution of these and the equations for the admittances

of the lines into the variable-mesh FD–TLM method (11)
yields (20) when AT in the FD–TD method is equated to

Al=/h in the FD–TLM method. The methods are

thus seen to be identical. For example, if h is selected as

2.0 in the FD–TLM method for a simulation involving

free space as the medium, then the corresponding FD–TD

time step would be AT= A1/2c. According to [2], for the

three-dimensional uniform-mesh FD–TD method, the time

step must meet the criterion AT< Al/fit for stability.

Thus, the FD–TLM method has an inherent extra margin

of stability.

[

h

1

E

/

! d 2“

k-
X

z

Fig. 4. Implementation of lumped resistance at an Ez node.

For the H.y series node and the surrounding E.y and E=

shunt nodes in the FD–TLM method, the electromagnetic-

fields are related to the node voltages and current by

V,= Ezw V,= Eyv IX= HXii (24)

where ii is the averaged length of the cell surrounding the

HX node. Substitution of these into the variable-mesh

FD–TLM method, (13), gives (22) after the equations for

the impedances of the lines connecting at the HX node are

substituted and the same value of AT is used. The numeri-

cal stability considerations are thus the same as those for

the E, node.

VI. INCORPORATION OF RESISTORS AND

CAPACITORS IN THE FD–TLM METHOD

Basically, a resistance can be thought of as a region of

conducting media with electrodes at either end. If the

region is rectangular, sandwiched between highly conduc-

tive end plates, and small compared to the wavelength,

then it can be considered a lumped resistor with value

R = d/uhw, where d, h, and w are the dimensions of the

rectangular region and o is the conductivity. In the

FD–TLM method, an example of the implementation of a

lumped resistor with conductivity in the z direction is
shown in Fig. 4. Given the resistance desired and the

dimensions of the region, then the value calculated for a, is

used to determine the admittance for the FD–TLM loss

stub at the E, node. The shaded volume is the region of

influence of the E= node, which extends half the distance

in the x and y directions to the neighboring E, nodes. If

just one E= node has conductance, then the lumped con-

ductance is an infinitely thin filament, due to the dis-

cretized nature of the FD–TLM mesh. However, if several

neighboring E= nodes in the same x – y plane have con-

ductance, then a lumped two-dimensional sheet resistor or

three-dimensional block resistor is formed.
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This concept can be extended to lumped capacitors in

the FD–TLM method. Considering conductive plates at

the left and right ends of the region surrounding the E=

node in Fig. 4, the parallel-plate capacitance is C =
COE,zAw/d. From the desired value of C and the dimen-

sions of the region, ~,: is determined, which then specifies

the admittance of the permittivity stub in the FD-TLM

method.

VII. INCORPORATION OF THE IDEAL DIODE MODEL

IN THE FD–TLM METHOD

The ideal diode equation is 1 = l~(evi~v~ – l), where 1

and lS are the diode terminal and saturation currents,

respectively, V and Vt~ are the diode terminal and thermal

voltages, respectively, and q is the diode ideaiity factor.

This diode is implemented in the FD–TLM method at an

E, node, for example, by monitoring the electric field at

the node and multiplying by the distance d to find the

diode voltage. This voltage is then substituted in the ideal

diode equation to find the current that should flow through

the diode. From the diode voltage and current, the conduc-

tance to be implemented at the node is then determined. In

this explicit method, there is a time lag of AT between the

calculation of the diode voltage and the adjustment of the

diode conductance. However, this lag is so small, e.g., 1.7

fs for a 1 pm FD-TLM mesh spacing, compared to the

events of interest, such as the 10 ps switching speed of

transistors, that the diode’s behavior appears essentially

continuous in time. Other functional relationships between

1 and V can be incorporated similarly.

The capacitance of a diode varies with voltage and thus

can be incorporated by adjusting the dielectric constant at

the E= node, for example, to give the capacitance required

by the equation relating diode capacitance to voltage.

Although the implementation of lumped resistors, ca-

pacitors, diodes, and transistors in the TLM method has

been proposed previously [14], the emphasis in this refer-

ence was on solving a network problem in which the goal

was to find novel lumped circuit solution techniques as an

alternative to more conventional circuit simulators, rather

than solving a three-dimensional electromagnetic prob-

lem.

VIII. INCORPORATION OF A GAAS MESFET

MODEL IN THE FD–TLM METHOD

The GaAs MESFET model used in the UM-SPICE

(University of Minnesota SPICE) (Fig. 5(a)) [15] circuit

simulator program has been incorporated into the FD–

TLM method by using the concepts of voltage-variable

lumped resistance and capacitance. The drain current in

this model is related to gate and drain voltages by

where the coefficients are defined in [15].

GO-

k, I

307

DRAIN-SOURCE

s

W
,,
ILz

‘GS
s

(a) (b)

Fig. 5. (a) Circuit model for GaAs ILESFIW Implemented in the
FD–TLM method. (b) GaAs MESFET circuit model incorporated in
the FD–TLM method at two locations along the width of a 10X 1 #m
gate MESFET. The l?, nodes are shown as . for reference.

Fig. 5(b) shows the implemerltation of the MESFET

model in the FD–TLM mesh. In applications considered

so far, metal source and drain electrodes are typically 1 pm

wide and extend 1 pm above and below the substrate,

while the gate electrode extends 1 pm above the substrate.

The spacing of the electrodes is typically 1 pm. The

gate–source and gate–drain voltages are calculated from

the fields between these electrodes, and the drain–source

voltage is in turn calculated from these voltages. The

gate-source and gate-drain diodes are implemented as

described before and the drain–source current is imple-

mented by calculating the required drain current from (25)

and then subsequently adjusting the drain-source conduc-

tance to be equal to 1~~/ V~~.
Two and three of these lumpeti models have been used

along the width of 10 and 20 pm wide MESFET’S, respec-

tively, with good results. To accurately model the effect of

phase shift along the electrodes of wide (e.g., 0.5 mm)

MESFET’S in MMIC’S, perhaps 20 or more of these lumped

models could be distributed along the width. Several simu-

lations of complete IC’S having as many as ten MESFET’S

based on this MESFET model have lbeen shown to be

accurate and free from any kind of numerical instabilities

[16], [17].

IX. SIMULATION OF A PI~DOSECOND PULSE

GENERATOR STRIJCTURE

To verify the results of the variable-mesh FD-TLM

method, a simulation of a picclsecond pulse generator

constructed from a coplanar waveguide containing a shunt

discontinuity is compared to electro-optical measurements

[18]. Fig. 6 shows the layout of the pulse generator simu-

lated. The actual pulse generator works on the principle of

applying a dc voltage to charge the center conductor of the
coplanar waveguide to the left of the photoconductive gap

and then exciting the gap with a 120 fs duration laser

,pulse. The photoconductivity of the GaAs causes the line
to discharge and a short-rise-time, long-decay-time step
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Fig. 6. Compressed layout of the picosecond pulse generator.

TABLE I
VARIABLE-MESH DISCRETIZATION OF THE

PICOSECOND PULSE GENERATOR

Z-axis y-axis z-axis

cell No. pm cell No. pm cell No. pm

1 122 1 212 1-19 80

2 52 2 96 20–24 40

3-4 26 3-4 48 25–30 20

5 48 5-6 24 31-36 10

6 26 7-9 12 37-78 5

7 56 10–13 6 79-88 10

8 48 14 12 89-167 20

9-1o 24 15 24 168-177 10

11-12 12 16 48 178-219 5

13-16 6 17 96 220-229 10

17-21 5 18-19 192 230–319 20

22-25 5.7 20-21 384

pulse travels rightward toward the shunt. When the step

pulse reaches the shunt, only the high-frequency compo-

nents are transmitted. Thus, the shunt converts a long-

decay-time input pulse into a short-decay-time output

pulse.

The open structure on which measurements were per-

formed consists of a 0.35 pm gold layer on top of 0.05 pm

of titanium on a 0.5-mm-thick GaAs substrate. Seven

coplanar waveguide structures were side by side on the
chip separated by 100 pm. One of these was approximated

in the FD–TLM simulation as shown in Fig. 6 with

infinitely thin conductors having loss equivalent to 0.35

pm gold. To better represent the actual structure, the

ground planes of the neighboring coplanar waveguides

were also included in the simulation.

The structure was simulated in a perfectly conducting

metal rectangular package having dimensions 1.09 X 1.844

x 6.0 mm3 (x, y, z) and discretized with 25X21X 319

(x, y, z) cells as described in Table I. A magnetic wall was

used down the center of the coplanar waveguide to halve

the number of calculations. The 1O-Pm-long photoconduc-

IN (V) OUT (V)

2T A ~ 0.1

1.5

1

0.5

0

-0.5

0 5
1 TIME (PS) ‘----- 1-0.04

Fig, 7. FD–TLM simulated and ‘measured input and output pulses of
the picosecond pulse generator.

tive gap and the 20-pm-wide shunt are located 2.0 and 4.0

mm from the left end of the structure.

The simulation was performed by applying a z-directed

electric field in the gap in the plane of the coplanar

waveguide to generate a voltage

V(t) =0.4t[exp (– 0.17t)+ l.8exp(– O.38t)

+ 0.24exp ( – 0.0441)] (26)

where t is the time in picosecond, as an approximation to

the voltage step generated by the photoconductor excita-

tion.

Fig. 7 shows the FD–TLM simulation and electro-opti-

cal measurements of the voltages along the coplanar wave-

guide at points A, B, and C, which are at 205 pm past the

gap, 200 pm before the shunt, and 190 pm past the shunt,

respectively. In the simulation, the voltage along the copla-

nar waveguide was calculated by integrating the x-directed

electric field from the center conductor to the coplanar

ground plane. In the measurement, the voltage was deter-

mined by the same x-directed electric field sampled with

an electro-optic probe placed across the center conductor

and ground plane. The accuracy of the electro-optic probe

placement was +0.03 mm, corresponding to an accuracy

in time of about +-0.27 ps. The amplitude measurement

accuracy was roughly +20 percent. Thus, there is good

agreement between the variable-mesh FD–TLM simula-

tion and electro-optical measurements.

X. SIMULATION OF A DCFL INVERTER

To get independent verification of the accuracy of the

incorporation of an MESFET circuit model in the vari-

able-mesh FD–TLM method, FD–TLM and UM-SPICE
simulations were performed on the direct-coupled FET

logic (DCFL) inverter shown in Fig. 8. The dashed lines

represent the variable mesh, which has a 2:1 grading ratio

at adjacent cells and a smallest size of 1 pm. The chip was

simulated on a 0.513-mm-thick GaAs substrate mounted

at the bottom of a 1.05 X 1.538X 1.045 mm3 (x, y, z) per-

fectly conducting rectangular cavity discretized with 55X

25x 43 (x, y, z) cells as described in Table II.

The conductors in Fig. 8 are all 1 pm thick and perfectly

conducting, although they could have been made lossy in

the FD–TLM method. The crosshatched areas are l-pm-

thick resistors. The source resistor, for example, is modeled
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Fig. 8. Variable-mesh layout of the DCFLinverter.

TABLE II
VARIABLE-MESH DISCRETIZATION OF THE

DCFL INVERTER

z-axis y-axis

cell No, pm cell No. pm

1-3 128 1-3 128

4 64 4 64

5 32 5 32

6 16 6 16

7 8 7 8

8 4 8 4

9 2 9 2

z-axis

+

cell No. pm

1-3 128

4 164

5

6

32

16

8-7

-%1+-
10-37 1 10-15 1 10-34 1

38 2 16 2 35 2

42 32 20 32

43 64 21 64

4445 128 22 128

46 64 23-25 256

47 32

48 16

49 8

50 4

51 2

52-55 1

*

39 32

40 64

41-43 128

*
I

as a three-dimensional block of resistive material having

dimensions lpm X lpm X 8pm (x, y, z) and is described

with 1 x 2 x 9 (x, y, z) nodes. The 20x 1 pm enhancement

mode driver MESFET has threshold voltage VT= 0.21 V,

transconductance parameter j10 = 0.00287 A/Vz, parasitic

source and drain resistances R~ = RD = 50 Q, and zero-bias

(v)
1.2

1

DRAIN DRAIN
1 p, ,~..!!!w . .._-

:$.’’’w-’-

,,., woo
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Fig. 9. FD–TLM and UM-SPICE simulation results for the DCFL
inverter.

gate–source and gate–drain capacitances C~~O= C~~O =

9.59 fF. The 10X 1 pm depletion mode IIoad MESFET has

VT= – 0.61 V, PO= 0.00103 A/V:~, R~:= RD = 100 Q, and

c GSO = CGDO = 7.77 fF.

The FD-TLM simulation was performed by applying

an electric field in the x direction between the cavity wall

and the conductor marked VDD so that a 1 V step with a 40

ps rise time was generated. Likewise, the input signal

source was represented by applying an electric field in the

x direction between the cavity wall and the 100 Q source

resistor.

Fig. 9 shows good agreement between the variable-mesh

FD–TLM and UM-SPICE simulations for the voltages

calculated at the gate and drain of the driver transistor.

When the VDD line was raised to 1 V, the driver drain

voltage went to 1 V in response, since the input voltage

was O V. At 120 ps, the input voltage switched to 1 V and

the driver drain voltage started falling toward O V. At 260

ps, the input voltage switched to O V, causing the driver

drain voltage to progress toward 1 V. The voltages in the

FD–TLM method were calculated. by integrating the verti-

cal electric field along the path from the ground plane to

the MESFET electrodes. The parasitic capacitances and

inductances used in the UM-SPICE simulation were esti-

mated using formulas of Van Tuyl [19] and formulas in

[20].

XI. CONCLUSIONS

Two new contributions to the TLM electromagnetic

field solution method have been discussed. First, a new

variable-mesh full-wave combination of the transmission

line matrix and finite-difference time-domain numerical

methods, called the finite-difference transmission line ma-

trix (FD–TLM) method, has been developed and its rela-

tionship to its parent methods hals been discussed. It has

the computational efficiency of the FD–TD method, but

retains characteristics of the TLM method: intuitive for-

malism of wave propagation based on Huygen’s principle,
and numerical stability. Second, semiconductor diodes and

GaAs MESFET’S as well as resistors and capacitors have

been incorporated into the variable-mesh FD-TLM

method, allowing a unified, three-dimensional full-wave

electromagnetic simulation of microwave and high-speed

digital integrated circuits.
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Comparison of simulation and experimental electro-

optical measurements of a picosecond pulse generator

shows good agreement, as do FD–TLM and UM-SPICE

simulations of a DCFL inverter integrated circuit. Al-

though for this IC the UM-SPICE simulation based on a

quasi-static calculation of capacitance and inductance is

sufficient, ,because of the relatively small overall dimen-

sions involved, a full-wave method would be needed if the

circuit had larger dimensions.

The variable-mesh FD–TLM method incorporating

semiconductor devices is easier to use for IC simulation

compared to other electromagnetic methods, since it is

general purpose and does not require analytical approxi-

mations limiting it to certain special cases of conductor

geometries. A computer program has been written and

used in the layout of the conductor geometries on a

computer-aided-design workstation display screen to gen-

erate the data set necessary for variable-mesh FD–TLM

simulations of IC’s.

APPENDIX I

ANALOGY BETWEEN MAXWELL’S CURL EQUATIONS

AND THE CIRCUIT EQUATIONS

A. Series Nodes

Applying Kirchhoff’s voltage law to the HX node equiva-

lent circuit shown in Fig. 10 gives

1 afi 1 (?V, LPX 81X
— —— —- . (Al)
w ay u az vw at

where Lpx = LYY + LXZ. Comparing this to Maxwell’s curl

equation,

aEz aEy aHx
— . .px=

dy – az
(A2)

and letting E, = V:/w, EY = VV/v, and HX = IX/ii, where

ii = (u + u,_l)/2, gives LPX = pXuw/ii, where

2wx,,-lPx
~x = (A3)

~l–lPx+ wx, z-l

and PI, py, p, are the permeabilities at the series nodes

Assume that LXY and Lx= are both proportional to

VW/ ii Thus, LX. = Lx== LJ2, LXYO= jlxv/2ii, and LXZO

= ~Xw/2ii. The other H nodes are handled similarly.

B. Shunt Nodes

For the equivalent circuit of the E= shunt node shown in

Fig. 11, Kirchhoff’s current law gives

1 aIy 1 81X G= c= a~
—— —.— . c~+n— (A4)
G ax Q ay Uu w at -

Comparing this to Maxwell’s curl equation,

aHy aHx aEz—

dx – ay = “E’+” at
(A5)

and letting H.X = IX/~, Hy = IY/E, and E, = V=/w, where

ii = (u + u,_l)/2 and fi= (u+ U,_l)\2, gives G, = u=uu/w

A%_lw&J
1+

‘Y

L

w

avy

‘Y ‘-3Z w

/

/
/

o

Fig. 10. Equivalent circuit for the Hx series node.
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Fig. 11. Equivalent circuit for the EZ shunt node.

and C== i: iiti/ w. The weighted averages for the permittiv-

ity and conductivity are given as

Czuu + ( ~,l_lul_~u+c
Fz =

,, J_lzu’–~+E Z, Z–I, J–l%l UJ-1

W + U,_lu + uuJ_l+ u,_luJ_l

(A6)

and

UZUU+ (J= ~_ltll_lu+o
ij= =

,, J_luuj–l+ fJZ,l–l, ]—l”z —lv, –l

uu+u, _lo+uuJ_l+uz_luj_l

(A7)

The other E nodes are handled similarly.

APPENDIX II

DERIVATION OF THE FINITE-DIFFERENCE FORM OF

THE TLM METHOD FOR THE NODES

The voltage V,n+ 1 must be found in terms of the voltage

V=” and the currents at time t = (~ + ~) AT at the four

neighboring series nodes. The supersc;pts indicate the

time. The relation between the pulses incident to and
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reflected from the shunt node (see Fig. 2(a)) is given by Substituting (A12)–(A15) into (A 11) gives

where

[s],,=;

and

“!
VI
V2

= [S],h ~
V4
&

311

Y~zn ~zn,i_l Yx,n Yx=n j_l y~zn
,,

Y Yy=n,l_l Yxzn Yxzn ~_l y~zn
yzn

Y Yy,n,,_l Yxzn Yxzn’~_l y~zn
yzn

Y Yy,n,J_ ~ Yxzn Yxzn j_l y~=n
yzn

YYzn Yyzn,i_l Yxzn Yxzn ,_l Y~zn

Vzn+l =
y(~x,,-l- lx+{, -Iy,l_l) ”+’/’

(A8)
2

+“ ~ ( Yyznvlr + q=.,, -- Iv’,+- Zznv3r

The sum in the parentheses of the second term on the right

side of (A16) can be written as

-[1

(A9)

~ - Yyzn+ Y,z.,,-l + Y.;. + Yxzn, j-l + Yszn + y~zn. (Ale)

Substituting (A17) into (A16) gives (11),,

The current I:+ li’ is found similarly to yield (13) from

Voltages VI, V2, V3, V4, and V5 are defined with the same

polarity as V, at the E= node along the lines having where

the series node scattering relation (see Fig. 2(b)):

[

–Zxzn,,+l Zx,e~+1 –Zxzn ;+l

z – Zxzn z
[s].=: -Zyn ZXyn -Zyn

zxyn, k+l – Zxynk+~ Zxvnk+l.>
zPxn – Zpxn zPxn

admittances YYz~, Yyza,i_ ~, YXz~, YXz~,j_ ~, and y~z~, Iespec.

tively. The voltage across the shunt node at time

t = (n +1) AT is written as

K(
v=”+1=~ Y,znvlz+ q,., ,- IJ’-2, + YXZA

,. V +Y~z~~,)”+l. (All)+ Yxzn ,_l ~,

The currents at the neighboring series nodes are related to

the voltages at the shunt node by

z (v; -v:+’)I;j~;2= _ ‘x’n, J-l (A12)
o

zxza, j+l

– Zxzn
z

xyn

z
xzn>J+l

– Zx=n
z

x.vn 1+[1]

Fj

VB
Vc
v-
VE 1

-~‘
VB

= [s]. v. (A18)

VD
v-E

– Zxyn,k+l – Zxyfi,k+l

– Zpxn – Zpxn I
(A19)

and

~.z ~zn,,+ ~+ Zxzn + Zxyn + ,Zx,n ~+ ~+ .ZPxn. (AZ())
.!
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