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Abstract —This paper describes a variable-mesh combination of the
expanded-node transmission line matrix (TLM) and finite-difference
time-domain (FD-TD) methods for solving time-domain electromagnetic
problems. It retains the physical process of wave propagation and the
numerical stability of the former, and has the computational efficiency of
the latter. This full-wave finite-difference transmission line matrix
(FD-TLM) method utilizes transmission lines of differing impedances to
implement a three-dimensional variable mesh, which makes practical the
simulation of structures having fine details, such as digital integrated
circuits (IC’s). Circuit models for lumped resistors, capacitors, diodes, and
MESFET’s have been developed and included for use in simulating digital
and microwave IC’s. The validity of the variable mesh implementation is
verified by comparing an FD-TLM simulation of a picosecond pulse
generator structure with electro-optical measurements, and the validity of
the device model implementation is verified by comparing an FD-TLM
simulation of a MESFET logic inverter with a SPICE simulation.

I. INTRODUCTION

S SEMICONDUCTORS and thus digital and mi-
Acrowave integrated circuits (IC’s) become faster, the
interconnections within the chips play an increasingly im-
portant part in circuit design. Picosecond-speed devices
generate components in the tens to hundreds of gigahertz
frequency range, where quasi-static electromagnetic analy-
sis of interconnections is no longer accurate. What is
needed is a full-wave, three-dimensional electromagnetic
analysis. One such method is the transmission line matrix
(TLM) method [1], which has been used for larger struc-
tures to determine properties such as resonant frequencies
of cavities and microstrip dispersion. A related numerical
method, the finite-difference time-domain (FD-TD)
method [2], [3], has been used to simulate pulse propaga-
tion along conductors [4] and for electromagnetic scatter-
ing problems [5]. In most published descriptions of pulse
propagation along microstrips, the conductors are wide
enough that a uniform mesh can be used for the descrip-
tion of the structure. However, in digital IC’s, the conduc-
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tor widths are much smaller than the other dimensions of
the structure, for example a 1-um-wide conductor fabri-
cated on a 500-pm-thick substrate. In this case a variable-
mesh method is necessary to perform an accurate simula-
tion without exceeding the memory and time limits of even
supercomputers. A fine mesh 1s used around the conduc-
tors of interest and is smoothly graded into a coarse mesh
near the integrated circuit package walls. Previous vari-
able-mesh TLM methods [6], [7] have the disadvantage of
requiring more computer resources when used to simu-
late IC’s.

The ongoing refinement of the TLM method has taken
place in parallel with the use of the FD-TD method for
solving Maxwell’s curl equations [8]. The finite-difference
transmission line matrix (FD-TLM) method is a combina-
tion of both, offering a physical basis for wave propaga-
tion and the numerical stability of the TLM method and
the computational efficiency of the FD-TD method.

Previous simulations of microstrips using the FD-TD
method have been linear, where one end is excited with a
field source and the fields are determined as they travel
down the line to a linear termination [4]. By incorporating
circuit models for lumped elements such as resistors, ca-
pacitors, diodes, and MESFET’s in the FD-TLM method,
more realistic simulations of high-speed, high-frequency
IC’s are achieved.

A short review of the conventional, three-dimensional
expanded-node TLM method will be given, followed by a
description of the three-dimensional variable-mesh TLM
method that is based on transmission lines having differing
impedances. This method will be transformed into the
FD-TLM method by rewriting the TLM scattering matri-
ces as finite differences, which will then be compared with
the variable-mesh FD-TD method. A description of the
circuit models for resistors, capacitors, diodes, and MES-
FET’s follows. A variable-mesh FD-TLM simulation of a
picosecond pulse generator structure will be compared to
electro-optic measurements, and an FD-TLM simulation
of a two-MESFET logic inverter will be compared with a
SPICE simulation to demonstrate the validity of the vari-
able mesh method and the MESFET model implementa-
tion.
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Fig. 1. Variable-mesh TLM cell. The six field components in the lower

left corner are associated with ¢, j, k.
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Fig. 2. (a) E, shunt node. (b) H, series node. The line with impedance
Z,,, is the same line in (a) having admittance Y. The permeability

xzn

stub has impedance Z,_ .

II. REVIEW OF THE THREE-DIMENSIONAL
ExpANDED-NODE TLM METHOD

The conventional, three-dimensional expanded-node
TLM method is based on pulses which travel along trans-
mission lines interconnected as a three-dimensional matrix
and then scatter at the intersections (nodes) into other
connecting lines [1}. Fig. 1 shows a cell of six nodes that is
repeated throughout the structure to be simulated. In the
uniform-mesh case, u=v=w = A/ and the lines all have
length A//2 and the impedance of free space. There are
two types of nodes: shunt nodes, where the voltage corre-
sponds to an electric field; and series nodes, where the
circulating current corresponds to a magnetic field. The
computer program simulates wave propagation by per-
forming scattering operations at all the shunt nodes at one
time step and at all the series nodes half a time step later,
yielding an explicit numerical method. In this manner,
electromagnetic wave propagation is simulated, according
to Huygens’s principle [9]. Fig. 2 shows detailed drawings
of the two nodes. The time step, T, is the time it takes for a
pulse to travel a length Al along the lines.

The TLM method is based on an analogy between
Maxwell’s equations and the transmission line equations
for the matrix [1]. Thus, by calculating the voltage at a
shunt node and the current through a series node from the

Fig. 3. An example of 18 variable-mesh TLM cells stacked together,
emphasizing the interconnection of the H, and E, nodes with their
neighbors: O magnetic node, ® electric node. The cell at i, j, k with
dimensions u=2, v=2, w=3 is highlighted. The stubs have been
removed from the nodes for clarity.

scattering matrices, the electric and magnetic fields are
found, respectively.

Typically, a simulation of a structure is performed by
applying a series of pulses to an electric field node and
monitoring the voltages at other shunt nodes. A metal
conductor is described by shorting out appropriate shunt
nodes. Dielectric and losses, both isotropic and anisotropic,
are described by adding shunt-connected open-circuited
and loss stubs, respectively, to the shunt nodes [10]. Like-
wise, permeability variations are described by adding se-
ries-connected shorted stubs to the series nodes. The stubs
are omitted from Fig. 1 for clarity. In [11]-[13], anisotropic
permittivity and loss are represented instead by lumped
capacitance and resistance at the electric field nodes, and
permeability is represented by lumped capacitance at the
magnetic field nodes.

III. THE VARIABLE-MESH THREE-DIMENSIONAL
TLM METHOD

The variable-mesh TLM method uses the same intercon-
nection of lines as the uniform-mesh TLM method. Cells
represented by six nodes can have sides of different length
and are stacked together to fill the entire space being
simulated. Fig. 3 is an example of several variable-mesh
cells filling a region of space. The lengths of the matrix
cells are represented by u, v, and w. Each cell of dis-
cretized space is referenced by an i, j, k locator, but for
clarity, only those positions which differ from i, j, or k
are listed. Note that the cell dimension u=u, ,  is inde-
pendent of j and k; v is independent of / and k; and w is
independent of i and j. Other symbols in Fig. 3 are
defined later.
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In [6], two techniques are described which implement a
two-dimensional variable mesh in the TLM method, one
called the stub loaded matrix, where the transmission lines
are all of the same impedance, and the other called the
hybrid matrix, where the matrix is composed of lines
having different impedances. The three-dimensional stub
loaded matrix method has the disadvantage that the simu-
lation time step is made smaller than that in a uniform
mesh having the same smallest grid spacing, by the ratio of
the largest to the smallest grid spacing. This increases the
number of iterations needed to perform a simulation for a
given time period. However, by implementing the three-
dimensional variable mesh using the hybrid matrix ap-
proach described below, the size of the time step is no
longer dependent on the grading ratio, thus significantly
reducing the computer time required to perform a simula-
tion involving large grading ratios.

In the hybrid-matrix variable-mesh implementation, all
transmission line segments connecting the nodes of the
same type are of length A/, set equal to the shortest length
of the variable mesh, and stub loading is then added at the
shunt nodes to represent the longer lines. Each transmis-
sion line segment, or link, has inductance per unit length
of p,/h and capacitance per unit length of €, /4, where A
is a velocity scaling factor to be determined later, and p,
and ¢, are the permeability and permittivity, respectively,
of free space. The propagation velocity of pulses on a link
is thus proportional to 4, and is equal to the speed of light
in air when # is unity. Thus, the propagation delay along a
link is
Al Al

= io (1)

where v is the propagation velocity of pulses along a line.
Equation (1) indicates that % is also a time scaling factor.

To simulate lines that are longer than Al the pulses
must travel at a velocity proportional to the artificial line
length to maintain pulse synchronization throughout the
network. Thus

T=
v

1 v

G (2)

where v is the velocity of pulses on a line of artificial
length /" having loaded inductance per unit length of L,
and capacitance per unit length of C,. From (1) and (2) it
follows that

D=

_ (Al)zﬂofo (3)
0 h2Lol/2

Thus, the impedance |L,/C, of this artificially extended
line is proportional to the length /', which verifies that a
variable mesh can be obtained from a network of transmis-
sion lines having different impedances. The computation
of L, and C, is considered in the following.

A. Series Nodes

The relation between Maxwell’s curl equations and the
transmission line equations at a series node determines the
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inductance per unit length of the lines. As an example,
consider the lines connecting the E, shunt node to the A,
H, , 1, H, and H,, , series nodes, which have induc-
tances per unit length of L, =wp,/2u, L, ; 1=
Wnl_"x,j—l/259 LyzO - W}_Ly/ZZ_), and LyzO,i—1= wn‘_l‘y,i—l/257
respectively, as derived in Appendix I, where g, u, and ©
are defined. The lines connecting series nodes to shunt
nodes are identified using subscripts, with the first repre-
senting the type of series node and the second describing
the shunt node. The 0 subscript indicates that the induc-
tance is per unit length. In these expressions and elsewhere
multiplication is assumed to have precedence over division.

Since Z,=Z/Zy=hl'Ly/Alp,y, then from (3) C,=
€gAl/hl'Z,, where the subscript n means normalized to
the impedance of free space, Z,. Thus, the normalized line
impedances are Z,,, = powh/2ullp,, Z,, 1=

By, jo10j—Wh /28 Alpg, Z,,, = p,uwh /206 Alp,, and

yzn

yemyi—1= Py, —14;_1wh /20Alpg, and the line capacitances
per unit length are C,o=¢qAl/WZ, ,, C,o,_1=
€0 Al/hvj_lem’j_l, C0= eOAl/thyzn, and C,q, 1=

€oAl/hu,_1Z,, , ;. Thus, the variable mesh requires us-
ing loaded lines having different impedances. The same

concepts apply to the H, node.
B. Shunt Nodes

Even though the transmission lines satisfy the induc-
tance requirement at the series nodes, they do not neces-
sarily have the correct capacitance to satisfy Maxwell’s
curl equations at the shunt nodes. At some shunt nodes, it
is necessary to add capacitance in parallel with the four
intersecting lines, which is performed by connecting an
open-circuited A//2 long transmission line stub in shunt
with the other lines.

Consider the E, shunt node, which, from Appendix I,
should have a total capacitance of

C = E(czuv +e€, ,qu, v+
€, U, 1t 6:.1-1,j‘1ui-—1UJ71)' (4)

The stub must compensate for the deficiency in the inter-

secting lines’ capacitance, and it has a capacitance of
— 1

CS:: - Cz - E(Cyzou + Cy20,171u1~1 + szOU + szO.J~lvjfl)‘
(5)

The lumped element approximation for an open-circuit

stub of length Al/2, at frequencies where the wavelength
is relatively long compared to the stub, is a capacitance

CSz = %TYYS: (6)
where Y, is the stub admittance [6]. The admittance of a
stub, normalized to the admittance of free space, ¢, /p,,
is

s, -
Szn EOAI

from (1) and (6).
There is also an infinitely long loss stub attached to each
E shunt node to represent the conductivity of the region in
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space. For the E, node, the loss stub has an admittance of where

YLz = G: = Z;(UZUU + Uz,z—lut—lv +

Oz,j—luvj-1+62,1—1,1~1ui—1vj—1) (8)
from Appendix I. The same concepts also apply to the E,
and E, shunt nodes.

Since the TLM method is based on the idea of simulat-
ing wave propagation by using networks of passive trans-
mission lines, it is necessary that all stub admittances be
nonnegative. This feature of the TLM method ensures
numerical stability against exponentially increasing signals.
To prevent the admittance of the stubs from being nega-
tive, & in the equations for transmission line capacitance is
selected to be sufficiently large. However, & should be no
larger than necessary, since the time step used in the
simulation is == Al/hc, where c¢ is the speed of light in
free space, which means that more iterations would be
needed in the simulation for an excessively large A.

That a constant value of 4, independent of the grading
ratio, will prevent the stubs from having negative admit-
tance values, can be seen by considering (5) and substitut-
ing the equations for the capacitances, which gives

h’w

1 v U u
— +—+

d - ) )
ui, Ofi

For media with permittivities and permeabilities equal

uz—l“y,i‘l vj—lnu‘x,j—l

to or greater than those of free space, (9) provides a stub -

with smallest capacitance (worst case) when these are
equal to those of free space. Thus, using the free-space
values in (9) and requiring C;, to be nonnegative, we

obtain
1 1
h>AL2 + .
uu, VU

Now, since the smallest dimension is Al (ie., u> Al
v>Al), h=2 prevents the stub from having negative
capacitance and thus negative admittance, for any grading
ratio.

(10)

IV. REFORMULATION AS A FINITE-DIFFERENCE
METHOD

The uniform-mesh TLM method has been shown to be
equivalent to the direct implementation of Maxwell’s curl
equations as finite differences by Johns [3]. Appendix II
shows, in a perhaps more intuitive manner, how the vari-
able-mesh TLM method can be rewritten as finite differ-
ences.

The scattering matrix for the variable-mesh TLM E,
shunt node is listed in Appendix II along with its reformu-
lation into the finite-difference equation

2Y7m 2Z,

n+l_ 1-—= Kn+_
V. ( K )“ K

n+1/2
.uwﬂ-g+g~ghg+/ (11)

K=Y

yzn

(12)

and the Y are the admittances of the lines connected to
this node, normalized to the admittance of free space and
the superscripts represent the time step. Similarly, the
scattering matrix for the variable-mesh TLM H, series
node is listed in Appendix II, which yields the finite-dif-
ference equation

+szn‘l._1+Y +7Y +Y,,+tY,,,

xzh xzn, j—1 Zn

L= e (Vo a4 Y ea = F,)" (19)
0
where
M= szn,j+1 + szn + nyn + van,k+l + ZPxn (14)

and the Z are the impedances of the lines connected to
this node, normalized to the impedance of free space.
Thus, the variable-mesh TLM method has been converted
into the variable-mesh FD-TLM method.

The three-dimensional variable-mesh FD-TLM method
requires much less in the way of computer resources than
the three-dimensional extension of the variable-mesh TLM
method proposed by Al-Mukhtar and Sitch [6]. The pres-
ent method uses only 18 memory locations per six-field
cell versus 26 (or 30 if anisotropic permittivity and perme-
ability are considered) in [6]. Moreover, the present method
requires only 36 floating point operations per cell versus
69 in [6]. Even more significant is that the time step in the
present method is independent of the mesh grading ratio,
unlike [6], where the time step size is reduced in proportion
to the ratio of the largest to smallest mesh spacing, thereby
requiring many more iterations for the same total simula-
tion period. For example, in the DCFL inverter simulation
described later, there is a mesh cell with dimensions ¥ = w
=1 pm and v =256 pm, with €, =1, yielding a time step
of 1.67x107 15 s for the present method, and by (7) and
(24(b)) in [6], 6.51x10718 s for the latter method. Thus,
the variable-mesh FD-TLM method is much more compu-
tationally efficient for IC simulation than the method
described in [6].

The variable-mesh FD-TLM method also has advan-
tages over the three-dimensional variable-mesh punctual
node method [7] for IC simulation. The punctual node
method has a very complex 1515 scattering matrix at
each six-field node. Although for regular cavities contain-
ing only one or two dielectrics these are easily simplified,
they are very unwieldy to store in memory and multiply by
the node voltages for structures having elaborate conduc-
tor and dielectric boundary conditions found in IC’s. Thus,
less computer memory and time would be required for an
IC simulation using the variable-mesh FD-TLM method.
This, as all other discrete mesh methods, introduces nu-
merical dispersion, which is a function of the mesh size
variation. Although there is reasonable agreement between
the FD-TLM method and other approaches, as discussed
later, further study of this effect is needed.
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V. DIRecT IMPLEMENTATION OF MAXWELL’S
EQUATIONS AS FINITE DIFFERENCES AND
COMPARISON WITH THE VARIABLE-MESH

FD-TLM METHOD

Maxwell’s curl equation for the E, field is
dH, JH, JE

Z—I—oE
dx ay

-6 (19)

which, when truncated Taylor series are used for the
partial derivatives as follows,
dH,

1 n
Ix ~E(Hy_Hy,t—1) i (16)
aH, 1 )
ay zE(Iix_lq = 1) s (17)
JE. 1
gy ~ E(Ezn+1 _ Ezn) (18)

and the time average is used for E, in the term containing

the conductivity,
E,=L(EM'+E!) (19)
gives
En+1 1 262
: (2¢./AT)+ 3,
AL

2
Elr+|——"7—
? ((2EZ/AT)+EZ
—H )n+1/2

x, j—1 X

(20)

u

In isotropic loss-free regions, this is similar to the ap-
proach used in [5], but (19) is treated differently, as is also
the averaging of conductivity, permittivity, and permeabil-
ity. When similar approximations are used, the equation

JE, OE, _ dH, 1)
dy dz Sy
gives
Hn+1/2 Hn 1/2 AT Vk+1—Ey+ EZ_E::,/+1
: .U«x w )

(22)

The electromagnetic fields at the E, shunt node and the
surrounding H, and H, series nodes in the FD-TLM
method are related to the analogous node voltage and
currents by

V.=Ew, I,=Hq, [,=Hp

(23)

Substitution of these and the equations for the admittances
of the lines into the variable-mesh FD-TLM method (11)
yields (20) when AT in the FD-TD method is equated to
Alfpgeo /b in the FD-TLM method. The methods are
thus seen to be identical. For example, if 4 is selected as
2.0 in the FD-TLM method for a simulation involving
free space as the medium, then the corresponding FD-TD
time step would be AT = Al /2¢. According to [2], for the
three-dimensional uniform-mesh FD-TD method, the time
step must meet the criterion AT <Al/V3 ¢ for stability.
Thus, the FD-TLM method has an inherent extra margin
of stability.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 38, NO. 3, MARCH 1990

Ezi+1,j+1
Ex j+1 Ex,j+1 k+1
Ez,j+1
// e @ =7
c /’;4///////// 2,i+1 /\\
y/,/,{EX -k Sk T #Ex ks
1 ,/ / E -
// ‘Z//\ \
T // ’ Z ,/ \\\
AN
// / / 7 \\\/
—-——»
hi y // s //\\ - —
L // / "1/ GURRENT
FLOW
! d ™

Fig. 4. Implementation of lumped resistance at an E, node.

For the H, series node and the surrounding E, and E,
shunt nodes in the FD-TLM method, the electromagnetic
fields are related to the node voltages and current by

V,=E,w V,=Ep IL=Ha (24)

where # is the averaged length of the cell surrounding the
H_ node. Substitution of these into the variable-mesh
FD-TLM method, (13), gives (22) after the equations for
the impedances of the lines connecting at the H, node are
substituted and the same value of AT is used. The numeri-
cal stability considerations are thus the same as those for
the E, node.

V1. INCORPORATION OF RESISTORS AND
CAPACITORS IN THE FD-TLM METHOD

Basically, a resistance can be thought of as a region of
conducting media with electrodes at either end. If the
region is rectangular, sandwiched between highly conduc-
tive end plates, and small compared to the wavelength,
then it can be considered a lumped resistor with value
R=d/ohw, where d, h, and w are the dimensions of the
rectangular region and o is the conductivity. In the
FD-TLM method, an example of the implementation of a
lumped resistor with conductivity in the z direction is
shown in Fig. 4. Given the resistance desired and the
dimensions of the region, then the value calculated for o, is
used to determine the admittance for the FD-TLM loss
stub at the E, node. The shaded volume is the region of
influence of the E, node, which extends half the distance
in the x and y directions to the neighboring E, nodes. If
just one E, node has conductance, then the lumped con-
ductance is an infinitely thin filament, due to the dis-
cretized nature of the FD-TLM mesh. However, if several
neighboring E, nodes in the same x—y plane have con-
ductance, then a lumped two-dimensional sheet resistor or
three-dimensional block resistor is formed.
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This concept can be extended to lumped capacitors in
the FD-TLM method. Considering conductive plates at
the left and right ends of the region surrounding the E,
node in Fig. 4, the parallel-plate capacitance is C=
€4, hw/d. From the desired value of C and the dimen-
sions of the region, ¢,, is determined, which then specifies
the admittance of the permittivity stub in the FD-TLM
method.

VII. INCORPORATION OF THE IDEAL DIODE MODEL

IN THE FD-TLM METHOD

The ideal diode equation is I = Ig(e"/"= —1), where I
and I are the diode terminal and saturation currents,
respectively, V' and V, are the diode terminal and thermal
voltages, respectively, and 7 is the diode ideality factor.
This diode is implemented in the FD-TLM method at an
E, node, for example, by monitoring the electric field at
the node and multiplying by the distance d to find the
diode voltage. This voltage is then substituted in the ideal
diode equation to find the current that should flow through
the diode. From the diode voltage and current, the conduc-
tance to be implemented at the node is then determined. In
this explicit method, there is a time lag of AT between the
calculation of the diode voltage and the adjustment of the
diode conductance. However, this lag is so small, e.g., 1.7
fs for a 1 pm FD-TLM mesh spacing, compared to the
events of interest, such as the 10 ps switching speed of
transistors, that the diode’s behavior appears essentially
continuous in time. Other functional relationships between
I and V can be incorporated similarly.

The capacitance of a diode varies with voltage and thus
can be incorporated by adjusting the dielectric constant at
the E, node, for example, to give the capacitance required
by the equation relating diode capacitance to voltage.

Although the implementation of lumped resistors, ca-
pacitors, diodes, and transistors in the TLM method has
been proposed previously [14], the emphasis in this refer-
ence was on solving a network problem in which the goal
was to find novel lumped circuit solution techniques as an
alternative to more conventional circuit simulators, rather
than solving a three-dimensional electromagnetics prob-
lem.

VIII. INCORPORATION OF A GAAs MESFET

MopEL IN THE FD-TLM METHOD

The GaAs MESFET model used in the UM-SPICE
(University of Minnesota SPICE) (Fig. 5(a)) [15] circuit
simulator program has been incorporated into the FD-
TLM method by using the concepts of voltage-variable
lumped resistance and capacitance. The drain current in
this model is related to gate and drain voltages by

GCHIVDS
.80 ( VGS - VT ) 2

(25)

Insg=Bo(Vs — VT)Z(l + AVps) tanh[

where the coefficients are defined in [15].
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Fig. 5. (a) Circuit model for GaAs MESFET implemented in the
FD-TLM method. (b) GaAs MESFET circuit model incorporated in
the FD-TLM method at two locations along the width of a 10X1 pm
gate MESFET. The E, nodes are shown as @ for reference.

Fig. 5(b) shows the implementation of the MESFET
model in the FD-TLM mesh. In applications considered
so far, metal source and drain electrodes are typically 1 pm
wide and extend 1 pm above and below the substrate,
while the gate electrode extends 1 pm above the substrate.
The spacing of the electrodes is typically 1 pm. The
gate—source and gate—drain voltages are calculated from
the fields between these electrodes, and the drain—source
voltage is in turn calculated from these voltages. The
gate—source and gate—drain diodes are implemented as
described before and the drain-—source current is imple-
mented by calculating the required drain current from (25)
and then subsequently adjusting the drain—source conduc-
tance to be equal to I,s/ V.

Two and three of these lumped models have been used
along the width of 10 and 20 pm wide MESFET’s, respec-
tively, with good results. To accurately model the effect of
phase shift along the electrodes of wide (e.g., 0.5 mm)
MESFET’s in MMIC’s, perhaps 20 or more of these lumped
models could be distributed along the width. Several simu-
lations of complete IC’s having as many as ten MESFET’s
based on this MESFET model have been shown to be
accurate and free from any kind of numerical instabilities
[16], {17).

IX. SIMULATION OF A P1COSECOND PULSE
GENERATOR STRUCTURE

To verify the results of the variable-mesh FD-TLM
method, a simulation of a picosecond pulse generator
constructed from a coplanar waveguide containing a shunt
discontinuity is compared to electro-optical measurements
[18]. Fig. 6 shows the layout of the pulse generator simu-
lated. The actual pulse generator works on the principle of
applying a dc voltage to charge the center conductor of the
coplanar waveguide to the left of the photoconductive gap
and then exciting the gap with a 120 fs duration laser

pulse. The photoconductivity of the GaAs causes the line

to discharge and a short-rise-time, long-decay-time step
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Fig. 6. Compressed layout of the picosecond pulse generator.

TABLE 1
VARIABLE-MESH DISCRETIZATION OF THE
P1cOSECOND PULSE GENERATOR

z-axis y-axis z-axis
cell No. | um | cell No. | pm | cell No. | pm
1 122 1 212 1-19 80
2 52 2 96 20-24 | 40
3-4 26 3-4 48 25-30 | 20
5 48 5~6 24 31-36 10
6 26 7-9 12 37-78 5
7 56 | 10-13 6 79-88 10
8 48 14 12 | 89-167 } 20
9-10 24 15 24 | 168-177 | 10
11-12 12 16 48 | 178-219 | 5
13-16 6 17 96 | 220-229 | 10
17-21 5 18-19 | 192 | 230-319 | 20
22-25 | 5.7 | 20-21 | 384

pulse travels rightward toward the shunt. When the step
pulse reaches the shunt, only the high-frequency compo-
nents are transmitted. Thus, the shunt converts a long-
decay-time input pulse into a short-decay-time output
pulse.

The open structure on which measurements were per-
formed consists of a 0.35 pm gold layer on top of 0.05 pm
of titanium on a 0.5-mm-thick GaAs substrate. Seven
coplanar waveguide structures were side by side on the
chip separated by 100 pm. One of these was approximated
in the FD-TLM simulation as shown in Fig. 6 with
infinitely thin conductors having loss equivalent to 0.35
pm gold. To better represent the actual structure, the
ground planes of the neighboring coplanar waveguides
were also included in the simulation.

The structure was simulated in a perfectly conducting
metal rectangular package having dimensions 1.09 X 1.844
X6.0 mm® (x,y,z) and discretized with 25X21x319
(x, y, z) cells as described in Table I. A magnetic wall was
used down the center of the coplanar waveguide to halve
the number of calculations. The 10-pm-long photoconduc-
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Fig. 7. FD-TLM simulated and ‘measured input and output pulses of
the picosecond pulse generator.
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tive gap and the 20-pm-wide shunt are located 2.0 and 4.0
mm from the left end of the structure.

The simulation was performed by applying a z-directed
electric field in the gap in the plane of the coplanar
waveguide to generate a voltage

V(t) =0.4t[exp(—0.17¢) + 1.8 exp (—0.38¢)
+0.24exp (—0.0441)]  (26)

where ¢ is the time in picoseconds, as an approximation to
the voltage siep generated by the photoconductor excita-
tion.

Fig. 7 shows the FD-TLM simulation and electro-opti-
cal measurements of the voltages along the coplanar wave-
guide at points 4, B, and C, which are at 205 um past the
gap, 200 pm before the shunt, and 190 pm past the shunt,
respectively. In the simulation, the voltage along the copla-
nar waveguide was calculated by integrating the x-directed
electric field from the center conductor to the coplanar
ground plane. In the measurement, the voltage was deter-
mined by the same x-directed electric field sampled with
an electro-optic probe placed across the center conductor
and ground plane. The accuracy of the electro-optic probe
placement was +0.03 mm, corresponding to an accuracy
in time of about +0.27 ps. The amplitude measurement
accuracy was roughly 420 percent. Thus, there is good
agreement between the variable-mesh FD-TLM simula-
tion and electro-optical measurements.

X. SIMULATION OF A DCFL INVERTER

To get independent verification of the accuracy of the
incorporation of an MESFET circuit model in the vari-
able-mesh FD-TLM method, FD-TLM and UM-SPICE
simulations were performed on the direct-coupled FET
logic (DCFL) inverter shown in Fig. 8. The dashed lines
represent the variable mesh, which has a 2:1 grading ratio
at adjacent cells and a smallest size of 1 pm. The chip was
simulated on a 0.513-mm-thick GaAs substrate mounted
at the bottom of a 1.05x1.538x1.045 mm’ (x, y, z) per-
fectly conducting rectangular cavity discretized with 55X
25X 43 (x, y, z) cells as described in Table II.

The conductors in Fig. 8 are all 1 pm thick and perfectly
conducting, although they could have been made lossy in
the FD-TLM method. The crosshatched areas are 1-pm-
thick resistors. The source resistor, for example, is modeled
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Fig. 8. Variable-mesh layout of the DCFL inverter.

TABLE 11
VARIABLE-MESH DISCRETIZATION OF THE
DCFL INVERTER
z-axis y-axis z-axis
cell No. | ym | cell No. | pm | cell No. | pm

1-3 |128| 13 [128] 13 | 128

4 64 4 64 4 64

-5 32 5 32 5 32

6 |16 6 |16] 6 |16
7 8 7 8 7 8
8 4 8 4 8 4
9 2| 9 2| 9 2

1037 | 1| 1015 | 1 | 10-34 | 1

38 2 16 2 35 2

39 4 17 4 36 4

40 8 18 8 37 8

41 16 19 16 38 16

42 32 1 20 32 39 32

43 64 21 64 40 64

4445 128 ’22 128 | 41-43 128
46 | 64 | 23-25 | 256
47 | 3
48 | 16
49 8
50 4
51 2
52-55 | 1

as a three-dimensional block of resistive material having
dimensions lpymXlpmX8um (x, y,z) and is described
with 1X2X9 (x, y, z) nodes. The 20 X1 pm enhancement
mode driver MESFET has threshold voltage ¥, =021 V,
transconductance parameter S, = 0.00287 A /V?2, parasitic
source and drain resistances R = R, = 50 &, and zero-bias
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Fig. 9. FD-TLM and UM-SPICE simulation results for the DCFL
inverter.

gate—source and gate—drain capacitances Cggo= Cipo =
9.59 fF. The 10X 1 pm depletion mode load MESFET has
Vp=-061V, B,=0.00103 A/V? Ry= R, =100 Q, and
Cos0=Cgpo="1.77 {F. :

The FD-TLM simulation was performed by applying
an electric field in the x direction between the cavity wall
and the conductor marked V,,,, so that a 1 V step with a 40
ps rise time was generated. Likewise, the input signal
source was represented by applying an electric field in the
x direction between the cavity wall and the 100 Q. scurce
resistor.

Fig. 9 shows good agreement between the variable-mesh
FD-TILM and UM-SPICE simulations: for the voltages
calculated at the gate and drain of the driver transistor.
When the V;,, line was raised to 1 V, the driver drain
voltage went to 1 V in response, since the input voltage
was 0 V. At 120 ps, the input voltage switched to 1 V and
the driver drain voltage started falling toward 0 V. At 260
ps, the input voltage switched to 0 V, causing the driver
drain voltage to progress toward 1 V. The voltages in the
FD-TLM method were calculated by integrating the verti-
cal electric field along the path from the ground plane to
the MESFET electrodes. The parasitic capacitances and
inductances used in the UM-SPICE simulation were esti-
mated using formulas of Van Tuyl [19] and formulas in
[20].

XI. CONCLUSIONS

Two new contributions to the TLM electromagnetic
field solution method have been discussed. First, a new
variable-mesh full-wave combination of the transmission
line matrix and finite-difference time-domain numierical
methods, called the finite-difference transmission line ma-
trix (FD-TLM) method, has been developed and its rela-
tionship to its parent methods has been discussed. It has
the computational efficiency of the FD-TD method, but
retains characteristics of the TLM method: intuitive for-
malism of wave propagation based on Huygen’s principle,
and numerical stability. Second, semiiconductor diodes and
GaAs MESFET’s as well as resistors and capacitors have
been incorporated into the variable-mesh FD-TLM
method, allowing a unified, three-dimensional full-wave
electromagnetic simulation of microwave and high-speed.
digital integrated circuits.
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Comparison of simulation and experimental electro-
optical measurements of a picosecond pulse generator
shows good agreement, as do FD-TLM and UM-SPICE
simulations of a DCFL inverter integrated circuit. Al-
though for this IC the UM-SPICE simulation based on a
quasi-static calculation of capacitance and inductance is
sufficient, because of the relatively small overall dimen-
sions involved, a full-wave method would be needed if the
circuit had larger dimensions.

The variable-mesh FD-TLM method incorporating
semiconductor devices is easier to use for IC simulation
compared to other electromagnetic methods, since it is
general purpose and does not require analytical approxi-
mations limiting it to certain special cases of conductor
geometries. A computer program has been written and
used in the layout of the conductor geometries on a
computer-aided-design workstation display screen to gen-
erate the data set necessary for variable-mesh FD-TLM
simulations of IC’s.

APPENDIX |
ANALOGY BETWEEN MAXWELL’S CURL EQUATIONS
AND THE CIRCUIT EQUATIONS

A. Series Nodes

Applying Kirchhoff’s voltage law to the H_ node equiva-
lent circuit shown in Fig. 10 gives

10V, 19V, L, I,
—_———— = — (A1)
wdy v 9z ow  dt

where L, =L  + L,,. Comparing this to Maxwell’s curl
equation,

JE, JE, _ JH, Ao
dy 9z T Ty (42)

and letting £, =V, /w, E,=V, /v, and H =1 _/u, where
u=(u+u,_q1)/2 gives L, =p ow/u, where
Zﬁnu‘x,t—llu‘x
U1y + unu‘x,z—l

o= (A3)
and p,, p,, p, are the permeabilities at the series nodes
Assume that L,, and L, are both proportional to
vw{ﬁ. ThllS, L,=L,=L,/2 L, ,= ﬁg)/?f{, and L,
=pu,w/2u. The other H nodes are handled similarly.

B. Shunt Nodes

For the equivalent circuit of the E, shunt node shown in
Fig. 11, Kirchhoff’s current law gives

l?_li_lg.l_’f=€i gaVz (A4)
v dx udy w * w dr’
Comparing this to Maxwell’s curl equation,
oW, oH, _ _ _E
. 2y =02E2+828—t (A5)

and letting H =1 /u, H,=1, /v, and E.=V,/w, where
u=(u+u, )/2and v=_(v+v, ,)/2, gives G.=a,uv/w
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Fig. 11. Equivalent circuit for the E, shunt node.

and C, = ¢_uv/w. The weighted averages for the permittiv-
ity and conductivity are given as

€,=

€,uv + Ez,t~1ut-lu + e;',J—luvj—l + el,l—l,j—lulflvj*:l

wtu,_wtu, g tu,_ v
(A6)

and

_ o to, 4,0+ O, U4+ 0, -1, -1, 10,

w +u,_0tu,_+ U, 10,

t

(A7)
The other E nodes are handled similarly.

APPENDIX II
DERIVATION OF THE FINITE-DIFFERENCE FORM OF
THE TLM METHOD FOR THE NODES

The voltage V”*! must be found in terms of the voltage
V" and the currents at time 7= (n+ $)AT at the four
neighboring series nodes. The superscripts indicate the
time. The relation between the pulses incident to and
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reflected from the shunt node (see Fig. 2(a)) is given by

Substituting (A12)-(A15) into (A11) gives

r 3 n 2ZO n+1/2
Vl Vl Vz = K (Ix,j—l_Ix+1y_Iy,z~1)
v, v, )
I/3 = [S]Sh V3 (Ag) + E (Y:vznVIr + szn,l" leZr + sznI/fSr
v, v,
I/S I/S + Y;czn,j——lelr + XS’an/Sr) . (A16)
h The sum in the parentheses of the second term on the right
where side of (A16) can be written as
},yzn },yzn i—1 Y;czn )fxzn,j—l YSzn (E _ YL" )]r/n‘ (A17)
Yo Yywicr You Yi 1 Yo 2 )
) Zn yzn,i xzn xzn', J zn . . ) )
[Slsi==| Yon Yenicr Yern Yeow,o1 Y ~[1] Substituting (A17) into (A16) gives (11).
K y y y y Y. The current I7*%/2 is found similarly to yield (13) from
yan - Cyzma=lo Sxzm Sxzn,j=1 SSzn the series node scattering relation (see Fig. 2(b)):
Yjv:n szn,l—l },xzn },xzn,j‘l }rSzn r - i
) " (A9) Va i
( V 2
and Ve | =[81s| Ve (A18)
K= Y;zzn + YVZ",IAI + szn + )/:czn,j—l + YSzn + YLG‘ (A]'O) VD VD
Voltages V,, V,, V3, V,, and V; are defined with the same Ve - Ve
polarity as V, at the E, node along the lines having where
__szn,j+1 Zx:n,j+1 —szn,)+1 szn,j+1 szn,;+1 1
2 ZXZ” - szn szn - szn - szn
[Sls=-71 —Zom Zyn = Zyyn Z.n Zo  |+][1] (A19)
nyn,k+1 —nyn,k+1 z vn,k+1 _nyn,k+1 thyn,k+1
R ZPxn - ZPxn ZPxn - ZPxn - ZPxn
admittances Y, Y,,,, ; 1, ¥, Yoy ;1. and Y, respec-  and

tively. The voltage across the shunt node at time
t=(n+1)AT is written as

2
I/zn+1= E(Y

yzn

Vll + },yzn,l—lI/Zz + vaan/31

+7,

n+1
xzn, j—1 )

I/41 + YSZVII/51 (All)

The currents at the neighboring series nodes are related to
the voltages at the shunt node by

}fxzn, -1
i =-——2—=-vi) (A1)
0
2 = Y;’z""_l(Vn _ n+1) Al3
y,i—1 Z 2r 2i ( )
0
szn
L= —=(v -t (A14)
0
Y'n
L= - —= (v -virtt). (A15)

(¢

M= szn,j+1 + Zx::n + nyn +. xyn, k+1 + ZPxn' (A20)
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